
https://pythonschoolkvs.wordpress.com/ Page 1

https://pythonschoolkvs.wordpress.com/
CLASS-XII (SESSION 2020-21)

SUBJECT: COMPUTER SCIENCE (083) – PYTHON

INDEX

CHAPTER

NO.
CHAPTER NAME

PAGE

NO.

1 FUNCTIONS IN PYTHON 2

2 RECURSION 12

3 FILE HANDLING 16

4 CREATE & IMPORT PYTHON LIBRARIES 32

5 IDEA OF EFFICIENCY 36

6 DATA STRUCTURE-I (LINEAR LIST) 38

7 DATA STRUCTURE-II (STACK AND QUEUE) 48

By: Vikash Kumar Yadav

PGT-Computer Science

K.V. No.-IV ONGC Vadodara

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 2

CHAPTER-1

FUNCTIONS IN PYTHON

1.1 Definition: Functions are the subprograms that perform specific task. Functions are the

small modules.

1.2 Types of Functions:

There are three types of functions in python:

1. Library Functions (Built in functions)

2. Functions defined in modules

3. User Defined Functions

1. Library Functions: These functions are already built in the python library.

2. Functions defined in modules: These functions defined in particular modules. When

you want to use these functions in program, you have to import the corresponding module

of that function.

3. User Defined Functions: The functions those are defined by the user are called user

defined functions.

1. Library Functions in Python:

 These functions are already built in the library of python.

For example: type(), len(), input() etc.

Types of functions

Built in functions

Functions defined in
modules

User defined functions

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 3

2. Functions defined in modules:

a. Functions of math module:

To work with the functions of math module, we must import math module in program.

import math

S. No. Function Description Example

1 sqrt() Returns the square root of a number >>>math.sqrt(49)

7.0

2 ceil() Returns the upper integer >>>math.ceil(81.3)

82

3 floor() Returns the lower integer >>>math.floor(81.3)

81

4 pow() Calculate the power of a number >>>math.pow(2,3)

8.0

5 fabs() Returns the absolute value of a number >>>math.fabs(-5.6)

5.6

6 exp() Returns the e raised to the power i.e. e3 >>>math.exp(3)

20.085536923187668

b. Function in random module:

random module has a function randint().

 randint() function generates the random integer values including start and end values.

 Syntax: randint(start, end)

 It has two parameters. Both parameters must have integer values.

Example:

import random

n=random.randint(3,7)

*The value of n will be 3 to 7.

3. USER DEFINED FUNCTIONS:

The syntax to define a function is:

def function-name (parameters) :

 #statement(s)

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 4

Where:

 Keyword def marks the start of function header.

 A function name to uniquely identify it. Function naming follows the same rules of

writing identifiers in Python.

 Parameters (arguments) through which we pass values to a function. They are optional.

 A colon (:) to mark the end of function header.

 One or more valid python statements that make up the function body. Statements must

have same indentation level.

 An optional return statement to return a value from the function.

Example:

def display(name):

 print("Hello " + name + " How are you?")

1.3 Function Parameters:

A functions has two types of parameters:

1. Formal Parameter

2. Actual Parameter

1. Formal Parameter: Formal parameters are written in the function prototype and function

header of the definition. Formal parameters are local variables which are assigned values from

the arguments when the function is called.

Python supports two types of formal parameters:

i. Positional parameters

ii. Default parameters

i. Positional parameter: These are mandatory arguments. Value must be provided to

these parameters and values should be matched with parameters.

Example:

Let a function defined as given below:

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 5

def Test(x,y,z):

 .

 .

 .

Then we can call the function using these possible function calling statements:

p,q,r = 4,5,6

Test(p,q,r) # 3 variables which have values, are passed

Test(4,q,r) # 1 Literal value and 2 variables are passed

Test(4,5,6) # 3 Literal values are passed

So, x,y,z are positional parameters and the values must be provided these parameters.

ii. Default Parameters: The parameters which are assigned with a value in function header

while defining the function, are known as default parameters. This values is optional for

the parameter.

If a user explicitly passes the value in function call, then the value which is passed by the

user, will be taken by the default parameter. If no value is provided, then the default

value will be taken by the parameter.

Default parameters will be written in the end of the function header, means positional

parameter cannot appear to the right side of default parameter.

Example:

Let a function defined as given below:

def CalcSI(p, rate, time=5): # time is default parameter here

 .

 .

 .

Then we can call the function using these possible function calling statements:

CalcSI(5000, 4.5) # Valid, the value of time parameter is not provided, so it will take

 # default value, which is 5.

CalcSI(5000,4.5, 6) # Valid, Value of time will be 6

Valid/Invalid examples to define the function with default arguments:

CalcSI(p, rate=4.5, time=5): #Valid

CalcSI(p, rate=4.5, time=5): # Valid

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 6

CalcSI(p, rate=4.5, time): #Invalid, Positional argument cannot come after default

 #parameter

CalcSI(p=5000, rate=4.5, time=5): #Valid

2. Actual Parameter: When a function is called, the values that are passed in the call are

called actual parameters. At the time of the call each actual parameter is assigned to the

corresponding formal parameter in the function definition.

Example :

def ADD(x, y): #Defining a function and x and y are formal parameters

 z=x+y

 print("Sum = ", z)

a=float(input("Enter first number: "))

b=float(input("Enter second number: "))

ADD(a,b) #Calling the function by passing actual parameters

In the above example, x and y are formal parameters. a and b are actual parameters.

1.4 Calling the function:

Once we have defined a function, we can call it from another function, program or even the

Python prompt. To call a function we simply type the function name with appropriate

parameters.

Syntax:

function-name(parameter)

Example:

ADD(10,20)

OUTPUT:

Sum = 30.0

How function works?

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 7

def functionName(parameter):

 … .. …

 … .. …

… .. …

… .. …

functionName(parameter)

… .. …

… .. …

1.5 The return statement:

The return statement is used to exit a function and go back to the place from where it was

called.

There are two types of functions according to return statement:

a. Function returning some value (non-void function)

b. Function not returning any value (void function)

a. Function returning some value (non-void function) :

Syntax:

return expression/value

Example-1: Function returning one value

def my_function(x):

 return 5 * x

 Example-2 Function returning multiple values:

 def sum(a,b,c):

 return a+5, b+4, c+7

 S=sum(2,3,4) # S will store the returned values as a tuple

 print(S)

OUTPUT:

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 8

(7, 7, 11)

Example-3: Storing the returned values separately:

def sum(a,b,c):

 return a+5, b+4, c+7

 s1, s2, s3=sum(2, 3, 4) # storing the values separately

 print(s1, s2, s3)

OUTPUT:

7 7 11

b. Function not returning any value (void function) : The function that performs some

operationsbut does not return any value, called void function.

def message():

 print("Hello")

m=message()

print(m)

OUTPUT:

Hello

None

1.6 Scope and Lifetime of variables:

Scope of a variable is the portion of a program where the variable is recognized. Parameters

and variables defined inside a function is not visible from outside. Hence, they have a local

scope.

There are two types of scope for variables:

1. Local Scope

2. Global Scope

1. Local Scope: Variable used inside the function. It can not be accessed outside the function.

In this scope, The lifetime of variables inside a function is as long as the function executes.

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 9

They are destroyed once we return from the function. Hence, a function does not remember the

value of a variable from its previous calls.

2. Global Scope: Variable can be accessed outside the function. In this scope, Lifetime of a

variable is the period throughout which the variable exits in the memory.

Example:

def my_func():

 x = 10

 print("Value inside function:",x)

x = 20

my_func()

print("Value outside function:",x)

OUTPUT:

Value inside function: 10

Value outside function: 20

Here, we can see that the value of x is 20 initially. Even though the function my_func()changed

the value of x to 10, it did not affect the value outside the function.

This is because the variable x inside the function is different (local to the function) from the

one outside. Although they have same names, they are two different variables with different

scope.

On the other hand, variables outside of the function are visible from inside. They have a global

scope.

We can read these values from inside the function but cannot change (write) them. In order to

modify the value of variables outside the function, they must be declared as global variables

using the keyword global.

1.7 Passing Strings, Lists, Tuples and Dictionaries to functions:

1.7.1 Passing Strings to Function:

Example:

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 10

Output:

PythonClassXII

1.7.2 Passing List to function:

Example:

Output:

Physics

CS

Chemistry

English

Maths

Note: Same process for tuple and dictionaries.

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 11

Programs related to Functions in Python topic:

1. Write a python program to sum the sequence given below. Take the input n from the user.

1 +
1

1!
+
1

2!
+
1

3!
+ ⋯+

1

𝑛!

Solution:

def fact(x):

 j=1

 res=1

 while j<=x:

 res=res*j

 j=j+1

 return res

n=int(input("enter the number : "))

i=1

sum=1

while i<=n:

 f=fact(i)

 sum=sum+1/f

 i+=1

print(sum)

2. Write a program to compute GCD and LCM of two numbers

def gcd(x,y):

 while(y):

 x, y = y, x % y

 return x

def lcm(x, y):

 lcm = (x*y)//gcd(x,y)

 return lcm

num1 = int(input("Enter first number: "))

num2 = int(input("Enter second number: "))

print("The L.C.M. of", num1,"and", num2,"is", lcm(num1, num2))

print("The G.C.D. of", num1,"and", num2,"is", gcd(num1, num2))

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 12

CHAPTER-2

RECURSION

2.1 Definition: A function calls itself, is called recursion.

2.2 Python program to find the factorial of a number using recursion:

Program:

def factorial(n):

 if n == 1:

 return n

 else:

 return n*factorial(n-1)

num=int(input("enter the number: "))

if num < 0:

 print("Sorry, factorial does not exist for negative numbers")

elif num = = 0:

 print("The factorial of 0 is 1")

else:

 print("The factorial of ",num," is ", factorial(num))

OUTPUT:

enter the number: 5

The factorial of 5 is 120

2.3 Python program to print the Fibonacci series using recursion:

Program:

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 13

def fibonacci(n):

 if n<=1:

 return n

 else:

 return(fibonacci(n-1)+fibonacci(n-2))

num=int(input("How many terms you want to display: "))

for i in range(num):

 print(fibonacci(i)," ", end=" ")

OUTPUT:

How many terms you want to display: 8

0 1 1 2 3 5 8 13

2.4 Sum of n Natural Numbers using recursion:

 def SumNatural(num):

 if num<=1:

 return 1

 else:

 return num+SumNatural(num-1)

 n=int(input("Sum of How Many Natural Numbers : "))

 sum=SumNatural(n)

 print("Sum of", n, "Natural numbers is:",sum)

OUTPUT:

Sum of How Many Natural Numbers : 6

Sum of 6 Natural numbers is: 21

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 14

2.5 Binary Search using recursion:

Note: The given array or sequence must be sorted to perform binary search.

Program:

def Binary_Search(sequence, item, LB, UB):

 if LB>UB:

 return -5 # return any negative value

 mid=int((LB+UB)/2)

 if item==sequence[mid]:

 return mid

 elif item<sequence[mid]:

 UB=mid-1

 return Binary_Search(sequence, item, LB, UB)

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 15

 else:

 LB=mid+1

 return Binary_Search(sequence, item, LB, UB)

L=eval(input("Enter the elements in sorted order: "))

n=len(L)

element=int(input("Enter the element that you want to search :"))

found=Binary_Search(L,element,0,n-1)

if found>=0:

 print(element, "Found at the index : ",found)

else:

 print("Element not present in the list")

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 16

CHAPTER-3

FILE HANDLING

3.1 INTRODUCTION:

File:- A file is a collection of related data stored in a particular area on the disk.

Stream: - It refers to a sequence of bytes.

Need of File Handling:

 File handling is an important part of any web application.

 To store the data in secondary storage.

 To Access the data fast.

 To perform Create, Read, Update, Delete operations easily.

3.2 Data Files:

Data files can be stored in two ways:

1. Text Files: Text files are structured as a sequence of lines, where each line includes a

sequence of characters.

2. Binary Files : A binary file is any type of file that is not a text file.

S.

No.
Text Files Binary Files

1. Stores information in ASCII characters.

Stores information in the same format

which the information is held in

memory.

2.

Each line of text is terminated with a

special character known as EOL (End of

Line)

No delimiters are used for a line.

3.

Some internal translations take place

when this EOL character is read or

written.

No translation occurs in binary files.

4. Slower than binary files.

Binary files are faster and easier for a

program to read and write the text

files.

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 17

3.3 Opening and closing a file:

3.3.1 Opening a file:

To work with a file, first of all you have to open the file. To open a file in

python, we use open() function.

The open() function takes two parameters; filename, and mode. open() function returns a file

object.

Syntax:

file_objectname= open(filename, mode)

Example:

To open a file for reading it is enough to specify the name of the file:

f = open("book.txt")

The code above is the same as:

f = open("book.txt", "rt")

Where "r" for read mode, and "t" for text are the default values, you do not need to specify

them.

3.3.2 Closing a file:

After performing the operations, the file has to be closed. For this, a close() function is used to

close a file.

Syntax:

file-objectname.close()

3.4 File Modes:

Text

file

mode

Binary

File

Mode

Description

‘r’ ‘rb’ Read - Default value. Opens a file for reading, error if the file does not

exist.

‘w’ ‘wb’ Write - Opens a file for writing, creates the file if it does not exist

‘a’ ‘ab’ Append - Opens a file for appending, creates the file if it does not exist

‘r+’ ‘rb+’ Read and Write-File must exist, otherwise error is raised.

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 18

‘w+’ ‘wb+’ Read and Write-File is created if does not exist.

‘a+’ ‘ab+’ Read and write-Append new data

‘x’ ‘xb’ Create - Creates the specified file, returns an error if the file exists

In addition you can specify if the file should be handled as binary or text mode

“t” – Text-Default value. Text mode

“b” – Binary- Binary Mode (e.g. images)

3.5 WORKING WITH TEXT FILES:

3.5.1 Basic operations with files:

 a. Read the data from a file

 b. Write the data to a file

 c. Append the data to a file

 d. Delete a file

a. Read the data from a file:

There are 3 types of functions to read data from a file.

 read() : reads n bytes. if no n is specified, reads the entire file.

 readline() : Reads a line. if n is specified, reads n bytes.

 readlines(): Reads all lines and returns a list.

Steps to read data from a file:

 Create and Open a file using open() function

 use the read(), readline() or readlines() function

 print/access the data

 Close the file.

Create and Open a file

Read or Write data

Print/Access data

Close the file

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 19

Let a text file “Book.txt” has the following text:

“Python is interactive language. It is case sensitive language.

It makes the difference between uppercase and lowercase letters.

It is official language of google.”

Example-1: Program using read() function:

fin=open("D:\\python programs\\Book.txt",'r')

str=fin.read()

print(str)

fin.close()

fin=open("D:\\python programs\\Book.txt",'r')

str=fin.read(10)

print(str)

fin.close()

OUTPUT:

Python is interactive language. It is case sensitive

language.

It makes the difference between uppercase and

lowercase letters.

It is official language of google.

OUTPUT:

Python is

 Example-2: using readline() function:

fin=open("D:\\python programs\\Book.txt",'r')

str=fin.readline()

print(str)

fin.close()

OUTPUT:

Python is interactive language. It is case sensitive language.

Example-3: using readlines() function:

fin=open("D:\\python programs\\Book.txt",'r')

str=fin.readlines()

print(str)

fin.close()

OUTPUT:

['Python is interactive language. It is case sensitive language.\n', 'It makes the difference

between uppercase and lowercase letters.\n', 'It is official language of google.']

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 20

 Some important programs related to read data from text files:

Program-a: Count the number of characters from a file. (Don’t count white spaces)

fin=open("Book.txt",'r')

str=fin.read()

L=str.split()

count_char=0

for i in L:

 count_char=count_char+len(i)

print(count_char)

fin.close()

Program-b: Count the number of words in a file.

fin=open("Book.txt",'r')

str=fin.read()

L=str.split()

count_words=0

for i in L:

 count_words=count_words+1

print(count_words)

fin.close()

Program-c: Count number of lines in a text file.

fin=open("Book.txt",'r')

str=fin.readlines()

count_line=0

for i in str:

 count_line=count_line+1

print(count_line)

fin.close()

Program-d: Count number of vowels in a text file.

fin=open("D:\\python programs\\Book.txt",'r')

str=fin.read()

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 21

count=0

for i in str:

 if i=='a' or i=='e' or i=='i' or i=='o' or i=='u':

 count=count+1

print(count)

fin.close()

Program-e : Count the number of ‘is’ word in a text file.

fin=open("D:\\python programs\\Book.txt",'r')

str=fin.read()

L=str.split()

count=0

for i in L:

 if i=='is':

 count=count+1

print(count)

fin.close()

b. Write data to a file:

There are 2 types of functions to write the data to a file.

 write():Write the data to a file. Syntax:

write(string) (for text files)

write(byte_string) (for binary files)

 writelines(): Write all strings in a list L as lines to file.

To write the data to an existing file, you have to use the following mode:

"w" - Write - will overwrite any existing content

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 22

Example: Open the file "Book.txt" and append content to the file:

fout= open("Book.txt", "a")

fout.write("Welcome to the world of programmers")

Example: Open the file "Book.txt" and overwrite the content:

fout = open("Book.txt", "w")

fout.write("It is creative and innovative")

Program: Write a program to take the details of book from the user and write the record

in text file.

fout=open("D:\\python programs\\Book.txt",'w')

n=int(input("How many records you want to write in a file ? :"))

for i in range(n):

 print("Enter details of record :", i+1)

 title=input("Enter the title of book : ")

 price=float(input("Enter price of the book: "))

 record=title+" , "+str(price)+'\n'

 fout.write(record)

fout.close()

OUTPUT:

How many records you want to write in a file ? :3

Enter details of record : 1

Enter the title of book : java

Enter price of the book: 250

Enter details of record : 2

Enter the title of book : c++

Enter price of the book: 300

Enter details of record : 3

Enter the title of book : python

Enter price of the book: 450

c. Append the data to a file:

This operation is used to add the data in the end of the file. It doesn’t overwrite the existing

data in a file. To write the data in the end of the file, you have to use the following mode:

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 23

"a" - Append - will append to the end of the file.

Program: Write a program to take the details of book from the user and write the record

in the end of the text file.

fout=open("D:\\python programs\\Book.txt",'a')

n=int(input("How many records you want to write in a file ? :"))

for i in range(n):

 print("Enter details of record :", i+1)

 title=input("Enter the title of book : ")

 price=float(input("Enter price of the book: "))

 record=title+" , "+str(price)+'\n'

 fout.write(record)

fout.close()

OUTPUT:

How many records you want to write in a file ? :2

Enter details of record : 1

Enter the title of book : DBMS

Enter price of the book: 350

Enter details of record : 2

Enter the title of book : Computer

Networking

Enter price of the book: 360

d. Delete a file: To delete a file, you have to import the os module, and use remove()

function.

import os

os.remove("Book.txt")

Check if File exist:

To avoid getting an error, you might want to check if the file exists before you try to delete it:

Example

Check if file exists, then delete it:

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 24

import os

if os.path.exists("Book.txt"):

 os.remove("Book.txt")

else:

 print("The file does not exist")

3.6 WORKING WITH BINARY FILES:

Binary files store data in the binary format (0’s and 1’s) which is understandable by the

machine. So when we open the binary file in our machine, it decodes the data and displays in a

human-readable format.

 (a) Write data to a Binary File: Pickle is a special python package that is used to generate

data in binary format. Pickle comes with few methods like dump() to write data in binary

format.

Example:

import pickle

list =[] # empty list

while True:

 roll = input("Enter student Roll No:")

 sname = input("Enter student Name :")

 student = {"roll":roll,"name":sname} # create a dictionary

 list.append(student) # add the dictionary as an element in the list

 choice= input("Want to add more record(y/n) :")

 if(choice=='n'):

 break

file = open("student.dat","wb") # open file in binary and write mode

pickle.dump(list, file)

file.close()

OUTPUT:

Enter student Roll No:1201

Enter student Name :Anil

Want to add more record(y/n) :y

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 25

Enter student Roll No:1202

Enter student Name :Sunil

Want to add more record(y/n) :n

(b) Read data from a Binary File: To read the data from a binary file, we have to use load()

function of pickle module.

Example:

import pickle

file = open("student.dat", "rb")

list = pickle.load(file)

print(list)

file.close()

OUTPUT:

[{'roll': '1201', 'name': 'Anil'}, {'roll': '1202', 'name': 'Sunil'}]

(c) Update a record in Binary File:

import pickle

roll = input('Enter roll number whose name you want to update in binary file :')

file = open("student.dat", "rb+")

list = pickle.load(file)

found = 0

lst = []

for x in list:

 if roll in x['roll']:

 found = 1

 x['name'] = input('Enter new name: ')

 lst.append(x)

if found == 1:

 file.seek(0)

 pickle.dump(lst, file)

 print("Record Updated")

else:

 print('roll number does not exist')

file.close()

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 26

OUTPUT:

Enter roll number whose name you want to update in binary file :1202

Enter new name: Harish

Record Updated

(d) Delete a record from binary file:

import pickle

roll = input('Enter roll number whose record you want to delete:')

file = open("student.dat", "rb+")

list = pickle.load(file)

found = 0

lst = []

for x in list:

 if roll not in x['roll']:

 lst.append(x)

 else:

 found = 1

if found == 1:

 file.seek(0)

 pickle.dump(lst, file)

 print("Record Deleted ")

else:

 print('Roll Number does not exist')

file.close()

OUTPUT:

Enter roll number whose record you want to delete:1201

Record Deleted

(e) Search a record in a binary file:

import pickle

roll = input('Enter roll number that you want to search in binary file :')

file = open("student.dat", "rb")

list = pickle.load(file)

file.close()

for x in list:

 if roll in x['roll']:

 print("Name of student is:", x['name'])

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 27

 break

else:

 print("Record not found")

OUTPUT:

Enter roll number that you want to search in binary file :1202

Name of student is: Harish

3.7 tell() and seek() methods:

 tell(): It returns the current position of cursor in file.

Example:

fout=open("story.txt","w")

fout.write("Welcome Python")

print(fout.tell())

fout.close()

Output:

14

 seek(offset) : Change the cursor position by bytes as specified by the offset.

Example:

fout=open("story.txt","w")

fout.write("Welcome Python")

fout.seek(5)

print(fout.tell())

fout.close()

Output:

5

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 28

3.8 File I/O Attributes

Attribute Description

name Returns the name of the file (Including path)

mode Returns mode of the file. (r or w etc.)

encoding Returns the encoding format of the file

closed Returns True if the file closed else returns False

Example:

f = open("D:\\story.txt", "r")

print("Name of the File: ", f.name)

print("File-Mode : ", f.mode)

print("File encoding format : ", f.encoding)

print("Is File closed? ", f.closed)

f.close()

print("Is File closed? ", f.closed)

OUTPUT:

Name of the File: D:\story.txt

File-Mode : r

File encoding format : cp1252

Is File closed? False

Is File closed? True

3.9 Pickle Module:

Python Pickle is used to serialize and deserialize a python object structure. Any object on

python can be pickled so that it can be saved on disk.

Pickling: Pickling is the process whereby a Python object hierarchy is converted into a byte

stream.

Unpickling: A byte stream is converted into object hierarchy.

To use the picking methods in a program, we have to import pickle module using import

keyword.

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 29

Example:

import pickle

In this module, we shall discuss to functions of pickle module, which are:

i. dump() : To store/write the object data to the file.

ii. load() : To read the object data from a file and returns the object data.

Example:

Write the object to the file: dump()

OUTPUT:

Read the object from a file: load()

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 30

OUTPUT:

3.10 CSV Files:

CSV (Comma Separated Values). A csv file is a type of plain text file that uses specific

structuring to arrange tabular data. csv is a common format for data interchange as it is

compact, simple and general. Each line of the file is one line of the table. csv files have

.csv as file extension.

Let us take a data.csv file which has the following contents:

Roll No., Name of student, stream, Marks

1, Anil, Arts, 426

2, Sujata, Science, 412

As you can see each row is a new line, and each column is separated with a comma. This

is an example of how a CSV file looks like.

To work with csv files, we have to import the csv module in our program.

3.10.1 Read a CSV file:

To read data from a CSV file, we have to use reader() function.

The reader function takes each row of the file and make a list of all columns.

CODE:

import csv

with open('C:\\data.csv','rt') as f:

 data = csv.reader(f) #reader function to generate a reader object

 for row in data:

 print(row)

OUTPUT:

['Roll No.', 'Name of student', 'stream', 'Marks']

['1', 'Anil', 'Arts', '426']

['2', 'Sujata', 'Science', '412']

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 31

3.10.2 Write data to a CSV file:

When we want to write data in a CSV file you have to use writer() function. To iterate

the data over the rows (lines), you have to use the writerow() function.

CODE:

import csv

with open('C:\\data.csv', mode='a', newline='') as file:

 writer = csv.writer(file, delimiter=',', quotechar='"')

 #write new record in file

 writer.writerow(['3', 'Shivani', 'Commerce', '448'])

 writer.writerow(['4', 'Devansh', 'Arts', '404'])

OUTPUT:

['Roll No.', 'Name of student', 'stream', 'Marks']

['1', 'Anil', 'Arts', '426']

['2', 'Sujata', 'Science', '412']

['3', 'Shivani', 'Commerce', '448']

['4', 'Devansh', 'Arts', '404']

When we shall open the file in notepad (Flat file) then the contents of the file will look

like this:

Roll No.,Name of student,stream,Marks

1,Anil,Arts,426

2,Sujata,Science,412

3,Shivani,Commerce,448

4,Devansh,Arts,404

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 32

CHAPTER-4

CREATE & IMPORT PYTHON LIBRARIES

4.1 INTRODUCTION:

Python has its in-built libraries and packages. A user can directly import the libraries and its

modules using import keyword. If a user wants to create libraries in python, he/she can create

and import libraries in python.

4.2 How to create Libraries/Package in Python?

To create a package/Library in Python, we need to follow these three simple steps:

1. First, we create a directory and give it a package name. Name should be meaningful.

2. Then create the python files (Modules) which have classes and functions and put these .py

files in above created directory.

3. Finally we create an __init__.py file inside the directory, to let Python know that the

directory is a package.

Example:

Let’s create a package named Shape and build three modules in it namely Rect, Sq and Tri to

calculate the area for the shapes rectangle, square and triangle.

Step-1 First create a directory and name it Shape. (In this case it is created under

C:\Users\ViNi\AppData\Local\Programs\Python\Python37-32\ directory path.)

Step-2 Create the modules in Shape directory.

To create Module-1(Rect.py), a file with the name Rect.py and write the code in it.

class Rectangle:

 def __init__(self):

 print("Rectangle")

 def Area(self, length, width):

 self.l=length

 self.w=width

 print("Area of Rectangle is : ", self.l*self.w)

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 33

To create Module-2(Sq.py), a file with the name Sq.py and write the code in it.

class Square:

 def __init__(self):

 print("Square")

 def Area(self, side):

 self.a=side

 print("Area of square is : ", self.a*self.a)

To create Module-3 (Tri.py), a file with the name Tri.py and write the code in it.

class Triangle:

 def __init__(self):

 print("Trinagle")

 def Area(self, base, height):

 self.b=base

 self.h=height

 ar= (1/2)*self.b*self.h

 print("Area of Triangle is : ", ar)

Step-3 Create the __init__.py file. This file will be placed inside Shape directory and can be

left blank or we can put this initialisation code into it.

from Shape import Rect

from Shape import Sq

from Shape import Tri

That’s all. Package created. Name of the package is Shape and it has three modules namely

Rect, Sq and Tri.

4.3 How to use the package in a program:

Following steps should be followed to use the created package.

Step-1 Create a file main.py in the same directory where Shape package is located.

Step-2 Write the following code in main.py file

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 34

from Shape import Rect

from Shape import Sq

from Shape import Tri

r=Rect.Rectangle() #Create an object r for Rectangle class

r.Area(10,20) # Call the module Area() of Rectangle class by passing argument

s=Sq.Square() #Create an object s for Square class

s.Area(10) # Call the module Area() of Square class by passing argument

t=Tri.Triangle() #Create an object t for Triangle class

t.Area(6,8) # Call the module Area() of Triangle class by passing argument

OUTPUT:

Rectangle

Area of Rectangle is : 200

Square

Area of square is : 100

Trinagle

Area of Triangle is : 24.0

4.4 Import the package in program:

Method-1

To use the package/library in a program, we have to import the package in the program. For

this we use import keyword.

If we simply import the Shape package, then to access the modules and functions of Shape

package, we have to write the following code:

Syntax:

Package-name.Module-name.function-name(parameter)

Example:

import Shape

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 35

r=Shape.Rect.Rectangle()

s=Shape.Sq.Square()

t=Shape.Tri.Triangle()

Method-2:

If we want to access a specific module of a package then we can use from and import

keywords.

Syntax:

from package-name import module-name

Example:

from Shape import Rect

r=Rect.Rectangle()

s=Sq.Square()

t=Tri.Triangle()

Method-3:

If a user wants to import all the modules of Shape package then he/she can use * (asterisk).

Example:

from Shape import *

r=Rect.Rectangle()

s=Sq.Square()

t=Tri.Triangle()

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 36

CHAPTER-5

IDEA OF EFFICIENCY

5.1 INTRODUCTION:

Program efficiency is a property of a program related to time taken by a program for execution

and space used by the program. It is also related to number of inputs taken by a program.

Complexity: To measure the efficiency of an algorithm or program in terms of space and time.

The program which uses minimum number of resources, less space and minimum time, is

known as good program.

Time and space complexity depends on lots of things like hardware, operating system,

processors, size of inputs etc.

Time Complexity of an algorithm:

 Best case

 Average case

 Worst case

 Best case: The minimum number of steps that an algorithm can take for any input data

values.

 Average case: The efficiency averaged on all possible inputs. We normally assume the

uniform distribution.

 Worst case: The maximum number of steps that an algorithm can take for any input

data values.

Complexity

Time Complexity Space Complexity

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 37

Complexity of certain well known algorithms:

(a) Linear Search : O(n)

(b) Binary Search : O(log n)

(c) Bubble Sort : O(n2)

5.2 Calculate Number of Operations:

Program (Bubble Sort):

L=eval(input("Enter the elements:"))

n=len(L)

for p in range(0,n-1):

 for i in range(0,n-1):

 if L[i]>L[i+1]:

 L[i], L[i+1] = L[i+1],L[i]

print("The sorted list is : ", L)

Step CODING No. of Operations

1 L=eval(input("Enter the elements:")) 1

2 n=len(L) #for example n=7 1

3 for p in range(0,n-1): one operation for each pass (executes 6 times, 0 to 5)

4 for i in range(0,n-1): executes 6 times for elements, same will repeat 6

times under each pass (outer loop) so 6x6=36
operations

5 if L[i]>L[i+1]: executes 6 times for comparisons in each pass, same

will repeat 6 times under each pass (outer loop) so

6x6=36 operations

6 L[i], L[i+1] = L[i+1],L[i] statement related to step-5, so 6x6=36 operations

7 print("The sorted list is : ", L) 1

 TOTAL: 1+1+6+36+36+36+1=117 operations

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 38

CHAPTER-6

DATA STRUCTURE-I (LINEAR LIST)

7.1 INTRODUCTION:

Definition: The logical or mathematical model of a particular organization of data is called

data structure. It is a way of storing, accessing, manipulating data.

7.2 TYPES OF DATA STRUCTURE:

There are two types of data structure:

1. Linear data structure

2. Non-Linear data structure

 Fig: Types of data structure

1. Linear data structure: It is simple data structure. The elements in this data structure creates

a sequence. Example: Array, linked list, stack, queue.

2. Non-Linear data structure: The data is not in sequential form. These are multilevel data

structures. Example: Tree, graph.

DATA STRUCTURE

LINEAR DATA
STRUCTURE

ARRAY
LINKED

LIST
STACK QUEUE

NON-LINEAR
DATA STRUCTURE

TREE GRAPH

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 39

7.3 OPERATION ON DATA STRUCTURE:

There are various types of operations can be performed with data structure:

1. Traversing: Accessing each record exactly once.

2. Insertion: Adding a new element to the structure.

3. Deletion: Removing element from the structure.

4. Searching: Search the element in a structure.

5. Sorting: Arrange the elements in ascending and descending order.

6. Merging: Joining two data structures of same type. (not covered in syllabus)

7.4 ARRAY (LISTS) IN DATA STRUCTURE:

An array or list is the collection of elements in ordered way. There are two types of arrays:

1. One dimensional array (1-D Lists)

2. Multi-dimensional array (Nested Lists)

7.4.1. One Dimensional array: It is the collection of homogeneous elements in an order.

a. Traversing 1-D array (List):

L=[10,20,30,40,50]

n=len(L)

for i in range(n):

 print(L[i])

Output:

10

20

30

40

50

 b. Inserting Element in a list: There are two ways to insert an element in a list:

(i) If the array is not sorted

(ii) If the array is sorted

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 40

(i) If the array is not sorted: In this case, enter the element at any position using insert()

function or add the element in the last of the array using append() function.

Example:

L=[15,8,25,45,13,19]

L.insert(3, 88) # insert element at the index 3

print(L)

Output:

[15, 8, 25, 88, 45, 13, 19]

(ii) If the array is sorted: In this case, import bisect module and use the functions bisect() and

insort().

bisect() : identifies the correct index for the element and returns the index.

insort(): Inserts the element in the list in its correct order.

Example:

import bisect

L=[10,20,30,40,50]

print("Array before insertion the element:", L)

item=int(input("Enter the element to insert in array: "))

pos=bisect.bisect(L,item) #will return the correct index for item

bisect.insort(L,item) #will insert the element

print("Element inserted at index: ", pos)

print("Array after insertion the element : ", L)

OUTPUT:

Array before insertion the value: [10, 20, 30, 40, 50]

Enter the element to insert in array: 35

Element inserted at index : 3

Array after insertion the element : [10, 20, 30, 35, 40, 50]

Note: bisect() works only with that lists which are arranged in ascending order.

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 41

c. Deletion of an element from a List: To delete an element from a list we can use remove()

or pop() method.

Example:

L=[10,15,35,12,38,74,12]

print("List Before deletion of element: ", L)

val=int(input("Enter the element that you want to delete: "))

L.remove(val)

print("After deletion the element", val,"the list is: ", L)

OUTPUT:

List Before deletion of element: [10, 15, 35, 12, 38, 74, 12]

Enter the element that you want to delete: 12

After deletion the element 12 the list is: [10, 15, 35, 38, 74, 12]

d. Searching in a List:

There are two types of searching techniques we can use to search an element in a list. These

are:

(i) Linear Search

(ii) Binary Search

(i) Linear Search: It is a simple searching technique.

Program:

L=eval(input("Enter the elements: "))

n=len(L)

item=eval(input("Enter the element that you want to search : "))

for i in range(n):

 if L[i]==item:

 print("Element found at the position :", i+1)

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 42

 break

else:

 print("Element not Found")

Output:

Enter the elements: 56,78,98,23,11,77,44,23,65

Enter the element that you want to search : 23

Element found at the position : 4

(ii) Binary Search: (Theory already discussed in the chapter recursion).

 Program:

def BinarySearch(LIST,n,item):

 LB=0

 UB=n-1

 while LB<=UB:

 mid=int((LB+UB)/2)

 if item<LIST[mid]:

 UB=mid-1

 elif item>LIST[mid]:

 LB=mid+1

 else:

 return mid

 else:

 return -1

L=eval(input("Enter the elements in sorted order: "))

size=len(L)

element=int(input("Enter the element that you want to search :"))

found=BinarySearch(L,size,element)

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 43

if found>=0:

 print(element, "Found at the position : ",found+1)

else:

 print("Element not present in the list")

OUTPUT:

Enter the elements in sorted order: [12,23,31,48,51,61,74,85]

Enter the element that you want to search : 61

61 Found at the position : 6

Linear Search Vs Binary Search:

Linear Search Binary Search

Access of elements sequentially. Access of elements randomly.

Elements may or may not be in sorted order.
Elements must be in sorted order i.e. ascending

or descending order

Takes more time to search an element. Takes less time to search an element.

easy tricky

Efficient for small array. Efficient for larger array

e. Sorting: To arrange the elements in ascending or descending order. There are many sorting

techniques. Here we shall discuss two sorting techniques:

(i) Bubble sort

(ii) Insertion sort

(i) BUBBLE SORT: Bubble sort is a simple sorting algorithm. It is based on comparisons, in

which each element is compared to its adjacent element and the elements are swapped if they

are not in proper order.

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 44

PROGRAM:

L=eval(input("Enter the elements:"))

n=len(L)

for p in range(0,n-1):

 for i in range(0,n-1):

 if L[i]>L[i+1]:

 L[i], L[i+1] = L[i+1],L[i]

print("The sorted list is : ", L)

OUTPUT:

Enter the elements:[60, 24, 8, 90, 45, 87, 12, 77]

The sorted list is : [8, 12, 24, 45, 60, 77, 87, 90]

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 45

(ii) INSERTION SORT: Sorts the elements by shifting them one by one and inserting the

element at right position.

PROGRAM:

L=eval(input("Enter the elements: "))

n=len(L)

for j in range(1,n):

 temp=L[j]

 prev=j-1

 while prev>=0 and L[prev]>temp: # comparison the elements

 L[prev+1]=L[prev] # shift the element forward

 prev=prev-1

 L[prev+1]=temp #inserting the element at proper position

print("The sorted list is :",L)

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 46

OUTPUT:

Enter the elements: [45, 11, 78, 2, 56, 34, 90, 19]

The sorted list is : [2, 11, 19, 34, 45, 56, 78, 90]

7.4.2. Multi-Dimensional array (Nested Lists): A list can also hold another list as its element.

It is known as multi-dimensional or nested list.

A list in another list considered as an element.

Example:

>>>NL=[10, 20, [30,40], [50,60,70], 80]

>>> len(NL)

5

>>>secondlist=[1,2,3,[4,5,[6,7,8],9],10,11]

>>> len(secondlist)

6

Accessing the elements from nested list:

Example-1:

>>> L=[1, 2, 3, [4, 5, [6, 7, 8], 9] ,10, 11]

>>> L[1]

2

>>> L[3]

[4, 5, [6, 7, 8], 9]

>>> L[3][1]

5

>>> L[3][2][0]

6

>>> L[3][2]

[6, 7, 8]

>>> L[3][2][1]

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 47

7

>>> L[3][3]

9

Example-2:

>>> L=["Python", "is", "a", ["modern", "programming"], "language", "that", "we", "use"]

>>> L[0][0]

'P'

>>> L[3][0][2]

'd'

>>> L[3:4][0]

['modern', 'programming']

>>> L[3:4][0][1]

'programming'

>>> L[3:4][0][1][3]

'g'

>>> L[0:9][0]

'Python'

>>> L[0:9][0][3]

'h'

>>> L[3:4][1]

IndexError: list index out of range

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 48

 CHAPTER-7

DATA STRUCTURE-II (STACK AND QUEUE)

8.1 STACK IN PYTHON:

8.1.1 INTRODUCTION:

 Stack is a linear data structure.

 Stack is a list of elements in which an element may be inserted or deleted only at one

end, called the TOP of the stack.

 It follows the principle Last In First Out (LIFO).

 There are two basic operations associated with stack:

o Push : Insert the element in stack

o Pop : Delete the element from stack

Example: Stack Push and Pop operations

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 49

8.1.2 Program for Stack:

 L=[] #empty list

 def push(item): #Insert an element

 L.append(item)

 def pop(): # Delete an element

 return L.pop()

 def peek(): #Check the value of top

 return L[len(L)-1]

 def size(): # Size of the stack i.e. total no. of elements in stack

 return len(L)

8.2 QUEUE IN PYTHON:

8.2.1 INTRODUCTION:

 Queue is a linear data structure.

 Queue is a list of elements in which insertion takes place at one end, called the REAR

and deletion takes place only at the other end, called the FRONT.

 It follows the principle First In First Out (FIFO).

 There are two basic operations associated with stack:

o Enqueue : Insert the element in queue

o Dequeue : Delete the element from queue

10 20 30 40 50 60

 front rear

8.2.2 Program for Enqueue and Dequeue Operations:

L=[]

def Enqueue(laptop): #Insert an element

 L.append(laptop)

 if len(L)==1:

 front=rear=L[0]

Remove Insert

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 50

 else:

 rear=L[len(L)-1]

 front=L[0]

 print("Front is: ", front)

 print("Rear is : ", rear)

def Dequeue(): # Delete an element

 if len(L)==0:

 print("List is Empty")

 elif len(L)==1:

 print("Deleted Element is :", L.pop())

 print("Now list is empty")

 else:

 d=L.pop(0)

 rear=L[len(L)-1]

 front=L[0]

 print("Front is: ", front)

 print("Rear is : ", rear)

 print("Deleted Element is :", d)

https://pythonschoolkvs.wordpress.com/

